
NOAA Technical Memorandum NMFS–SEFSC–548

User’s Guide to For2R:

A Module of Fortran 95 Output Routines

Compatible with the R Statistics Language

Michael H. Prager

Jennifer L. Martin

Andi Stephens

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

National Marine Fisheries Service

Southeast Fisheries Science Center

75 Virginia Beach Drive

Miami, Florida 33149

October, 2006

Software version 1.03

NOAA Technical Memorandum NMFS–SEFSC–548

User’s Guide to For2R:
A Module of Fortran 95 Output Routines
Compatible with the R Statistics Language

Michael H. Prager
Southeast Fisheries Science Center

Beaufort, North Carolina

Jennifer L. Martin
Northeast Fisheries Science Center

Woods Hole, Massachusetts

Andi Stephens
Southeast Fisheries Science Center

Beaufort, North Carolina

U. S. Department of Commerce
Carlos M. Gutierrez, Secretary

National Oceanic and Atmospheric Administration
Conrad C. Lautenbacher, Jr., Under Secretary for Oceans and Atmosphere

National Marine Fisheries Service
William T. Hogarth, Assistant Administrator for Fisheries

October, 2006

Software version 1.03

This Technical Memorandum series is used for documentation and timely communication of preliminary results,
interim reports, or similar special-purpose information. Although the memoranda are not subject to complete
formal review, editorial control, or detailed editing, they are expected to reflect sound professional work.

Notice of nonendorsement

The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any

proprietary product or material mentioned in this publication. No reference shall be made

to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion

which would imply that NMFS approves, recommends, or endorses any proprietary product or

proprietary material mentioned herein which has as its purpose any intent to cause directly or

indirectly the advertised product to be used or purchased because of this NMFS publication.

Suggested citation

Prager, M. H., J. L. Martin, and A. Stephens. 2006. User’s guide to For2R: A Module of Fortran

95 output routines compatible with the R statistics language. U.S. Department of Commerce,

NOAA Technical Memorandum NMFS–SEFSC–548. iv + 25 p.

Contacting the authors

The authors can be contacted by email at Mike.Prager@noaa.gov and Jennifer.Martin@

noaa.gov and will endeavor to provide support to users.

Revision history

June, 2005 Distributed for internal SEFSC use

October, 2006 Released as NOAA Technical Memorandum

Obtaining this document and software

Primary distribution of this document and software will be online. The document can be

obtained from the publications entry of the Southeast Fisheries Science Center Web site,

http://www.sefsc.noaa.gov/

The document and software will be submitted to the R Comprehensive Archive Network (CRAN)

for distribution,

http://cran.r-project.org/

Paper copies are best obtained by dowloading and printing the PDF file. Copies will also be

available from the National Technical Information Service, 5285 Port Royal Road, Springfield,

VA 22161, telephone (703) 605-6000.

ii

http://cran.r-project.org/
http://www.sefsc.noaa.gov/
mailto:Jennifer.Martin@noaa.gov
mailto:Jennifer.Martin@noaa.gov
mailto:Mike.Prager@noaa.gov

Contents

1 Introduction . 1

1.1 Overview of For2R . 1

1.2 The For2R package . 2

1.3 R in brief . 2

1.4 For2R and FishGraph . 2

1.5 Reporting Problems . 3

1.6 Data Structures in For2R . 3

2 Usage considerations . 4

2.1 Precision . 4

2.2 Object names . 4

2.3 Error checking . 4

3 Sequence of calls . 5

4 Specifications . 6

4.1 Open and close R-compatible data file . 6

4.2 Info list . 8

4.3 Comment object . 10

4.4 Vector object (element by element) . 11

4.5 Vector object (complete) . 13

4.6 Matrix object . 14

4.7 Data frame object . 16

4.8 List object . 18

5 Acknowledgments . 19

Bibliography . 19

Appendices . 20

A Fortran example listing . 20

iii

B Output listing . 23

C Sample R Session . 25

iv

1 Introduction

1.1 Overview of For2R

For2R is a collection of Fortran routines for saving complex data structures into a file that

can be read in the R statistics environment with a single command.1 For2R provides both

the means to transfer data structures significantly more complex than simple tables, and an

archive mechanism to store data for future reference.

We developed this software because we write and run computationally intensive numerical

models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to

automate data transfer to speed diagnostics during working-group meetings.

We thus developed the For2R interface to write an R data object (of type list) to a plain-text

file. The master list can contain any number of matrices, values, dataframes, vectors or lists,

all of which can be read into R with a single call to the dget function. This allows easy transfer

of structured data from compiled models to R.

Having the capacity to transfer model data, metadata, and results has sharply reduced the

time spent on diagnostics, and at the same time, our diagnostic capabilities have improved

tremendously. The simplicity of this interface and the capabilities of R have enabled us to

automate graph and table creation for formal reports. Finally, the persistent storage in files

makes it easier to treat model results in analyses or meta-analyses devised months—or even

years—later.

We offer For2R to others in the hope that they will find it useful.

Please note that For2R is considered an experimental product by NOAA and is released

to the scientific community for testing and research purposes. Neither the U.S. gov-

ernment nor the authors make any warranty of correct operation.

The X2R interface is available in three forms: for Fortran as For2R, for C/C++ as C2R, and for

AD Model Builder as ADMB2R. This guide specifically describes the For2R interface. The other

packages, including documentation, are available from the authors or from CRAN.

Because Fortran 95 includes all of Fortran 77, programs written to the the earlier standard can

be used with For2R, so long as compilation is done with a Fortran 95 compiler. Free compilers

for Fortran 95 are now available; for example, the compiler g95 can be downloaded from

http://www.g95.org/

1Mention of commercial or noncommercial products does not imply endorsement by NOAA, US Department of
Commerce, or any other government agency. No such endorsement is made or implied.

1

http://www.g95.org/

1.2 The For2R package

The For2R package contains the following files:

• This guide

• The Fortran module For2R.f90, which contains the output routines described here

• A sample driver program, for2r-test.f90, which demonstrates the use of the For2R

routines

• A makefile, makefile.mak, for compiling the driver program. This is set up for Opus

make and Lahey Fortran under Windows and will need modification for other systems.

• A sample output file, for2r-test.rdat, generated by the driver. This can be read into

R to demonstrate the type of data structures possible with For2R.

1.3 R in brief

The R statistics environment (R Development Core Team 2004) is a free, open-source pro-

grammable statistics system implemented as a dialect of the S language. R offers modern

statistics and excellent graphics, which are controlled from a command line, by programming,

or from one of several graphical interfaces. R can be downloaded from the Comprehensive R

Archive Network (CRAN) or its mirrors, e. g., from

http://cran.r-project.org/

All CRAN mirrors contain links to the R Project home page and to R documentation (much

available for free download) at several levels of complexity. Among commercially available

books, an introductory text is provided by Dalgaard (2002). More extensive treatments, still

at an introductory level, are given by Maindonald and Braun (2003) and Verzani (2005). Two

widely used reference books are Venables and Ripley (2003) and Venables and Ripley (2000).

1.4 For2R and FishGraph

The authors have developed a series of R graphics functions that produce typical graphs of

fisheries stock-assessment model output. We anticipate making these FishGraph functions

available on the CRAN archive in late 2006. Until FishGraph appears on CRAN, working copies

are available from the authors upon email request.

The FishGraph functions take an argument that is an R list, making FishGraph highly compat-

ible with X2R. The required structure of that list, described in the FishGraph manual, allows

for extensive user expansion or customization.

By using X2R to save model results and FishGraph to generate graphs, it is possible to produce

hundreds of diagnostic plots in seconds. The plots are saved automatically as files for use in

reports.

FishGraph is not a formal R package, but rather a series of R functions that we use in our work.

We offer it to colleagues to use as is or to modify for their own needs.

2

http://cran.r-project.org/

1.5 Reporting Problems

The authors will greatly appreciate receiving reports of any bugs found, so that they can be

corrected. We will also attempt to include user improvements or extensions. Such information

can be sent to Mike.Prager@noaa.gov.

1.6 Data Structures in For2R

Output from For2R is stored as an R list object in a structured ASCII file readable by R with a

dget function call. An R list is a container object that holds other data items. Each component

of a list is named, and subcomponents (e. g., the rows and columns of a contained matrix) may

be named as well.

If output from For2R is stored in (for example) a file named test.rdat, it can be read into R

as a list named results with the single R function call

results = dget("test.rdat")

Then the resulting R list object will contain the data saved by the For2R calls, along with

corresponding object names, metadata, and data structures specified by the user. Much of the

usefulness of For2R is that the files it creates may contain complicated data structures, and

yet are read with a single statement.

The following data types may be components of the master list:

• Comment. A subroutine is provided for writing R comments to the output file.

• Info list. This is a specialized list of character strings in name–value pairs. The current

date and time are included automatically. The info list is intended for storing metadata

such as the analyst’s name, units used in calculations, etc.

• Vector of real or integer numbers or character strings. Here, a vector is a series of name–

value pairs, intended to represent a collection of values, such as scalars from a model.

• Complete vector of numbers, written all at once from an array in the modeling source.

• Matrix. A two-dimensional array of real or integer values.

• Data frame. The R data frame is like the “dataset” of some statistics packages: a set

of samples (stored as rows) on different variables (stored as columns). For2R supports

giving meaningful column names and, optionally, row names, to data frames.

• List. A list may contain any number of other data objects, such as vectors and lists.

Like most statistics software, R supports the concept of missing (unobserved) values in data

objects. For2R supports writing missing values to its output file in R-compatible form.

3

mailto:Mike.Prager@noaa.gov

2 Usage considerations

2.1 Precision

Real numbers are transferred in ASCII (formatted) form. Precision of written values is governed

by the user’s specification of the argument digits in the subroutine open_r_file. Internal

data handling is done in double precision.

2.2 Object names

Names of R objects written by For2R may be up to 32 characters long. This limit can be

increased by changing the For2R source. No tests are made to ensure that names written are

useable in R. Legal R names may contain upper- and lower-case letters, digits, and the period

(dot) character. Names should not begin with digits. R also allows the underscore in names,

but we advise against it; in some versions of the S language, the underscore is an assignment

operator. In summary, the user is responsible for choosing suitable names for data objects.

2.3 Error checking

Basic error checking is provided by Fortran compilers. In particular, the use of a Fortran

module by For2R ensures that subroutine arguments are of correct type and rank.

Other errors are possible, and For2R checks for some of them. However, many unchecked

errors are possible in writing code. For example, it is possible to call the For2R routines

to create a file that cannot be parsed correctly by R. This will happen, for example, if the

argument last is not used to signal the final element in an object, or if an incorrect sequence

of calls leads to some other problem with object specification.

4

3 Sequence of calls

The following sequence of calls could be used to write a typical brief data object. For simplicity,

calls are shown here without arguments. Details of calls, including required and optional

arguments, are given in following sections by object type.

Dots (...) signify optional repetition of the preceding call.

Level Call Comment

0 call open_r_file Open the master data list

1 call open_r_info_list Open the info list

2 call wrt_r_item Write a value to the info list

2 ... Write more values to info list

1 call open_r_vector Initialize a vector

2 call wrt_r_item Write a vector element

2 ... Write more vector elements

1 call wrt_r_matrix Write a matrix

1 call open_r_list Open a list

2 call wrt_r_matrix Write a matrix to the list

2 call wrt_r_matrix Write a matrix to the list

1 call close_r_list Close the list

0 call close_r_file Close the file and master list

The preceding sequence writes a master object containing (1) the special info list (with date),

(2) a vector, (3) a matrix, and (4) a list containing two matrices.

5

4 Specifications

This section includes specifications of all subroutines in For2R, grouped by type of data object

written. Most—but not all—objects require a call to initialize the object and additional call(s)

to write data. A table of arguments for each set of subroutines indicates each argument’s

name, its Fortran data type, whether required or optional, and its purpose. Although we have

given many examples, users unfamiliar with Fortran optional arguments may need to consult

Fortran documentation.

When calling subroutines, optional arguments must be preceded by the argument name and

an equals sign. (This is the keyword form of argument specification.) Required arguments

may be specified in keyword form or by themselves. For example, the following two calls are

equivalent, because argument fname is required and the default value for optional argument

mxlevel is 6—

call open_r_file(fname="myoutput.rdat", mxlevel=6)

call open_r_file("myoutput.dat")

4.1 Open and close R-compatible data file

4.1.1 Overview

Subroutine open_r_file finds a free Fortran unit number, opens the output file, and writes

initialization information to it. Subroutine close_r_file writes final information to the out-

put file and closes it.

4.1.2 Call specification� �
call open_r_file(fname, mxlevel=6, mxcomp=128, digits=7)

call close_r_file
� �
* The values shown for mxlevel, mxcomp, and digits are used when values for those op-

tional arguments are not given by the user.

4.1.3 Table of arguments

Argument Type Required Description

fname character required Name of file to open for writing

mxlevel integer optional Maximum nesting level of object names

mxcomp integer optional Maximum number of component names at any level

digits integer optional Number of digits after the decimal point in transfer of

real values

6

* Storage is allocated by For2R for object names based on the values of mxlevel and mxcomp.

This involves the concept of nesting level (see §4.1.4).

* Each optional argument provided by the user should be preceded by argument name and

equals sign.

4.1.4 Nesting levels

In For2R, the user specifies the name of each data object. However, that name is written only

after the containing component is complete. For example, the name of a data frame column

is written only after the entire data frame is complete. To accomplish this, For2R keeps track

of names and the nesting level at which each name is defined. The user, when opening an

output file, must specify the maximum nesting level possible in the application (mxlevel) and

the number of names possible at each level (mxcomp).

Object names referring to direct components of the master object are by definition at nesting

level 1. For example, a data frame within the master object has its name stored at level 1.

Column names of that data frame are stored at level 2. Nesting level can increase markedly

when lists are stored. Components of a list would have their names at level 2; subcomponents

of those components at level 3, and so on.

The argument mxlevel sets the maximum nesting level allowed. If mxlevel is not given in the

subroutine call, the default value of 6 is used.

The argument mxcomp sets the maximum number of names allowed at any nesting level. For

example, this controls the maximum number of components at level 1 of the master object,

the maximum number of column names in any data frame, or the maximum number of com-

ponents in any list. Once a data item has been completely written, name storage is released

for other objects. If mxcomp is not given in the subroutine call, the default value of 128 is used.

4.1.5 Example

call open_r_file("run22.rdat", digits=5)

...

call close_r_file

4.1.6 Notes

These two subroutines must be the first and last calls in the sequence that writes an R object.

At present, only one file holding an R object can be open for writing at a time. It must be

completed and closed before another is written.

7

4.2 Info list

4.2.1 Overview

The info list contains a series of name–value pairs. The date can be inserted automatically as

the first such pair. At least one additional pair is required.

The list is initialized with the routine open_r_info_list, and data elements are written to it

with subroutine wrt_r_item.

4.2.2 Call specification� �
call open_r_info_list(name, date=.true.)

call wrt_r_item(name, ax, last=.false.)
� �
* The values shown for date and last are used if values for those optional arguments are

not given by the user.

* There is no default value for ax, so a value must be passed in the call. Keyword form must

be used when passing the value for ax. (This is because subroutine wrt_r_item has additional

arguments, which are not used in this context.)

4.2.3 Table of arguments

Argument Type Required Description

open_r_info_list

name character required Name for info list

date logical optional Set .false. to disable automatic date insertion

wrt_r_item

name character required Name of info component

ax character required* Value of info component

last logical optional Set .true. to indicate final data component in info

object

* ax is formally an optional argument, but it must be given (in keyword form) in this context.

4.2.4 Example

call open_r_info_list("info")

call wrt_r_item("units.length", ax="mm")

call wrt_r_item("units.mass", ax="mt")

call wrt_r_item("run.title", ax=title, last=.true.)

8

4.2.5 Notes

The example shows the use of the info list to store metadata describing an analysis. In the

final call, the example assumes that title is a Fortran character variable containing suitable

data.

In this example, open_r_info was called without the optional argument date. Thus, the date

and time will be stored in character format as the first component of the info list.

An alternative to using the info list is writing a vector of character values (§4.4). Such a vector

displays more compactly in R, which in some cases is advantageous.

9

4.3 Comment object

4.3.1 Overview

For troubleshooting purposes, or whenever the For2R output file will be viewed directly, it can

be useful to insert R comments. These are ignored by the R parser, just as they are when

entered at the command line.

4.3.2 Call specification� �
call wrt_r_comment(text)
� �

4.3.3 Examples

call wrt_r_comment("INFO list follows this comment.")

...

call wrt_r_comment(text="Vector Q follows this comment.")

4.3.4 Notes

Any trailing blanks in the comment text are removed when text is written to the output file.

Because the comments are ignored by the R parser, they are not part of the data object once it

has been read into R.

10

4.4 Vector object (element by element)

4.4.1 Overview

In For2R, a vector may be stored in one of two ways. The routine described here writes an

unordered collection of named real, integer, or character values to an R vector, one element at

a time. This is useful, e. g., when storing a collection of scalars from a model run. In contrast,

the routine in §4.5 writes a complete vector of values all at once.

When using the present routine, a separate vector should be written for each type of data (real,

integer, or character) to maintain the correct data types when R reads the file.

4.4.2 Call specification� �
call open_r_vector(name)

call wrt_r_item(name, x, ix, ax, na=.false., last=.false.)
� �
4.4.3 Table of arguments

Argument Type Required Description

name character required Name of vector or vector element

x real optional Real value of data item

ix integer optional Integer value of data item

ax integer optional Character value of data item

na logical optional Missing value indicator for data item

last logical optional Set .true. to indicate final data item in vector

* If the optional argument last is not given by the user, the default value of .false. is

used (as shown). The same applies to optional argument na.

* A missing but named element may be included in the vector by specifying na=.true. .

* One of x, ix, or ax should be given in the call. Omitting all three optional arguments is

equivalent to specifying na=.true.

4.4.4 Example

call open_r_vector("parms")

call wrt_r_item(name="vb.li", x=linf)

call wrt_r_item("vb.k", x=vbk)

call wrt_r_item("vb.t0", na=.true.)

call wrt_r_item("MSY", x=msy, last=.TRUE.)

11

4.4.5 Notes

The example shows use of a vector to store four quantities from an analysis in fish popula-

tion dynamics. The first, second, and fourth elements of the vector are stored from Fortran

variables; the third element is set to a missing value.

When using the resulting object in R, components can be selected with literal subscripting.

For example, consider the vector written above and named parms. Once the master object

containing this vector has been read into R and named (e. g.) result, the MSY value in the

vector can be referenced and assigned to a variable this way:

localmsy <- result$parms["MSY"]

12

4.5 Vector object (complete)

4.5.1 Overview

This routine writes a vector of character or numeric values (real or integer) to the output file

with a single subroutine call. To store a vector one element at a time, see §4.4.

4.5.2 Call specification� �
call wrt_r_complete_vector(name, x, ix, ax, na=.false., el_names, el_ids)
� �

4.5.3 Table of arguments

Argument Type Required Description

name character required Name of vector

x real optional Real values forming vector

ix integer optional Integer values forming vector

ax character optional character strings forming vector

na logical optional Missing value mask for vector

el_names character optional Element names as text

el_ids integer optional Element names as integers

* All arguments except name are Fortran arrays of rank 1.

* One and only one data vector (x, ix, or ax) can be given. The data-matrix argument must

be given in keyword form in the call.

* If names are desired, either el_names or el_ids may be given.

* If present, the missing-value vector na must be of the same size as the data vector. Ele-

ments of na set to .true. indicate missing elements of the data vector. All other elements of

na should be set to .false., since uninitialized elements may cause errors.

4.5.4 Examples

call wrt_r_complete_vector("height", x=height(:))

call wrt_r_complete_vector("year", ix=yr)

call wrt_r_complete_vector("ht.labeled", x=height, el_ids=yr)

4.5.5 Notes

In the example, the first line stores a real vector under name height; the second, an integer

vector under name year. The third line uses the values of the Fortran variable yr as labels

for the elements of vector ht.labeled. This presumes that the two Fortran vectors have the

same length.

13

4.6 Matrix object

4.6.1 Overview

A matrix object is a two-dimensional array. Only matrices of real or integer numbers are

currently supported by For2R.

4.6.2 Call specification� �
call wrt_r_matrix(name, x, ix, na, rownames, colnames, rowids, colids)
� �

4.6.3 Table of arguments

Argument Type Required Description

name character required Name of matrix

x real optional Real data matrix (Fortran array of rank 2)

ix integer optional Integer data matrix (Fortran array of rank 2)

na logical optional Missing-value mask (Fortran array of rank 2)

rownames character optional Row names as text (Fortran array of rank 1)

rowids integer optional Row names as integers (Fortran array of rank 1)

colnames character optional Column names as text (Fortran array of rank 1)

colids integer optional Column names as integers (Fortran array of rank 1)

* Rank denotes the number of dimensions in an array.

* One and only one data matrix (x or ix) must be given. In either case, the data-matrix argu-

ment should be given in keyword form.

* Row names may be omitted or be given as character (rownames=xxxx) or integer (rowids=xxxx).

The same is true of column names.

* If present, the missing-value matrix na must be of the same size and shape as the data

matrix. Elements of na set to .true. indicate missing elements of the data matrix. All other

elements of na should be set to .false., as uninitialized elements may cause errors.

4.6.4 Examples

call wrt_r_matrix("n.at.age", x=naa)

call wrt_r_matrix("n.at.age", x=naa, rownames=years, colids=ages)

14

4.6.5 Notes

The example shows two copies of the same real matrix stored into the output file. The first

copy is stored without row or column names. The second copy is stored with row names from

Fortran character variable years and column names from Fortran integer variable ages. Both

years and ages are assumed to be arrays of rank one (vectors) in the calling Fortran program.

In choosing between integer and real storage, the user should bear in mind that the absolute

magnitude of integers available is likely to be smaller than that of available real numbers.

An entire matrix is written by For2R in one call. For that reason, separate subroutines are not

required for initializing and then writing the matrix.

15

4.7 Data frame object

4.7.1 Overview

A data frame in R is a collection of data columns (vectors) of equal length. The columns may be

of different data types. The customary use of a data frame is to contain a set of observations

(samples, stored as rows) on several variables (stored as columns). Columns of a data frame

always carry names; rows may carry names. In this version of For2R, data frame columns may

contain real numbers, integers, or character values.

4.7.2 Call specification� �
call open_r_df(name)

call wrt_r_df_col(name, x, ix, ax, na, last, rownames, rowids)
� �
4.7.3 Table of arguments

Argument Type Required Description

name character required Name of data frame or column

x real optional Real values for column (Fortran array of rank 1)

ix integer optional Integer values for column (Fortran array of rank 1)

ax character optional Character values for column (Fortran array of rank 1)

na logical optional Missing value indicator (mask) for x, ix, or ax

last logical optional Set .true. if last column in data frame

rownames character optional Row names as character values. Used when

last==.true.

rowids integer optional Row names as integer values. Used when

last==.true.

* One and only data vector should be given. Thus, the call should include any one of argu-

ment x, argument ix, or argument ax. The data-vector argument, like all optional arguments,

should be named (i.e., keyword form should be used).

* The missing-value vector na must be of the same length and rank as the data vector. El-

ements of na set to .true. indicate missing elements of the data vector. Other elements of

na should be set to .false., as elements of na that have not been assigned values may cause

errors.

* In R data frames, row names refer to all columns of the data frame. If row names are

desired in the output, they should be provided by the user with the data for the final column

written. Either character or integer row names may be provided. If both are given, the character

values will be used.

16

4.7.4 Example

call open_r_df("timeseries")

call wrt_r_df_col(name="year", ix=year)

call wrt_r_df_col("biomass", x=b, na=na_b)

call wrt_r_df_col("cpue.obsd", x=u_obsd, na=na_cpue)

call wrt_r_df_col("cpue.pred", x=u_pred, last=.TRUE., rowids=year)

The preceding example shows the use of a data frame to store four time series from a fish

stock analysis. In the calling program, the integer array year and real arrays b, u_obsd, and

u_pred should all be of of the same size (say, n) and of rank 1. The two missing value arrays

na_b and na_cpue and the row ID array year should also be of of size n and rank 1. In this

example, the same numeric values are written as row names and as the first column of the

data frame.

17

4.8 List object

4.8.1 Overview

A list in R is a collection of other objects, i. e., of vectors, matrices, data frames, model results

(not supported in For2R), or other lists. Each component of a list must have a unique name.

In this version of For2R, a list may contain vectors, matrices, data frames, and other lists.

4.8.2 Call specification� �
call open_r_list(name)

...

call close_r_list
� �
Between initializing and closing a list, the user should initialize and write the components

contained by the list. The name argument is required.

4.8.3 Example

call open_r_list("laa.matrices")

call wrt_r_matrix("laa.obsd", laa_o)

call wrt_r_matrix("laa.pred", laa_p)

call close_r_list

4.8.4 Notes

The example shows the use of a list to store two matrices. The components of a list need not

be of the same shape or size. The subroutine wt_r_matrix is described in §4.6.

Because of the nature of a list, a dedicated subroutine is used to close all lists.

18

5 Acknowledgments

The authors are grateful for the support of the U.S. National Marine Fisheries Service, NOAA,

during development of this software. In particular, support was provided by the NMFS South-

east Fisheries Science Center, NMFS Northeast Fisheries Science Center, and NMRS National

Fisheries Toolbox program. K. W. Shertzer and E. H. Williams helped us test and refine

ADMB2R; R. Cheshire and C. Krouse read drafts of the three X2R manuals; and D. Fournier

helped us better understand his AD Model Builder software. Among other compilers, the GNU

C++ compiler gcc and the open-source Fortran 95 compiler g95 (due to A. Vaught) were used

in testing. We thank the authors of those tools for their many efforts. Finally, we thank R.

Gentleman, R. Ihaka, and the R Core Team, for without them, R would not exist.

Bibliography

Dalgaard, P. 2002. Introductory statistics with R. Springer, New York. 288 p.

Maindonald, J., and J. Braun. 2003. Data Analysis and Graphics Using R: An Example-Based

Approach. Cambridge University Press, New York. 362 pp.

R Development Core Team. 2004. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Last

accessed: October 10, 2006.

Venables, W. N., and B. D. Ripley. 2000. S Programming. Springer, New York. 264 p.

Venables, W. N., and B. D. Ripley. 2003. Modern Applied Statistics with S, fourth edition. Springer,

New York. 195 p.

Verzani, J. 2005. Using R for Introductory Statistics. Chapman & Hall/CRC, Boca Raton. 414 p.

19

http://www.R-project.org

Appendix A Listing of example file for2r-test.f90

! ===
! FOR2R-TEST.F90 M.H.Prager May 2005 - Aug 2006
! ===

! This is a driver program for testing for2r.f90.
! Those routines write [parts of] an R-compatible output object.
! This program generates some dummy data & calls those routines.

! ===
! Use subroutines to test any scoping issues 6/16/05
! For2R Routines renamed for similarity to C2R, A. Stephens, 1/2006
! Changed name of INFO object, M. Prager, 8/2006
! Changed KINDs to use default kinds, M. Prager, 8/2006
! ===

program for2rtest
implicit none
integer, parameter :: r4 = kind(1.0) !--real single precision
integer, parameter :: r8 = kind(1.0d0) !--real double precision
integer, parameter :: nyr=6, nage=5
integer :: i, iyr(nyr), iage(nage)
real(r8), dimension(nyr) :: v1, v2, v3
real(r8), dimension(nyr,nage) :: m1, m2
character(len=16) :: colnames(nage), rownames(nyr)
character(len=4) :: adum
logical, dimension(nyr,nage) :: mv_mat
logical, dimension(nyr) :: mv_vec

!======== The following are initialization tasks to fill Fortran
!======== arrays with numbers, etc., to prepare for testing the
!======== export functions to R.
! Note: variables m1, m2 are matrices
! Note: variables v1, v2, etc. are real vectors
! Note: variables iyr and iage are integer vectors

! Initialize missing-value matrix and vector:
mv_mat(:,:) = .false.
mv_mat(1,2) = .true.
mv_mat(4,3) = .true.
!
mv_vec(:) = .false.
mv_vec(2) = .true.
mv_vec(3) = .true.

! Pre-fill the real arrays with random numbers:
call random_number(m1)
m2 = 1.0e12 * m1
call random_number(v1)
call random_number(v2)
call random_number(v3)

! Fill the YEAR array with integers:
do i = 1, nyr

iyr(i) = 1990 + i
end do

! Generate column names:
do i = 1, nage

write(unit=adum, fmt="(i2.2)") i
colnames(i) = "var" // adum
iage(i) = i - 1

end do

! Generate row names:
do i = 1, nyr

write(unit=adum, fmt="(i4.4)") iyr(i)
rownames(i) = "yr" // trim(adum)

end do

!===== Now write a complicated R object that can be read with dget("filename")

call sub1()

20

call sub2(m1, m2, mv_mat, rownames, colnames, iyr, nyr, nage)
call sub3(v1, v2, v3, mv_vec,iyr, iage, m1, m2, mv_mat, rownames, nyr, nage)

end program for2rtest

subroutine sub1
use for2r
implicit none
integer, parameter :: r4 = kind(1.0) !--real single precision
integer, parameter :: r8 = kind(1.0d0) !--real double precision

! Open the file
call open_r_file("for2r-test.rdat", digits=6)
! Write the INFO object:
call open_r_info_list("info")

call wrt_r_item("author",ax="Michael H. Prager")
call wrt_r_item("run",ax="32b")
call wrt_r_item("species",ax="yellow grouper")
call wrt_r_item("model",ax="Statistical CAA")
call wrt_r_item("units.len",ax="mm")
call wrt_r_item("units.L",ax="mt", last=.TRUE.)

! Write an ELEMENTWISE VECTOR object:
call open_r_vector("real.parms")

call wrt_r_item("vb.k", x=0.2_r8)
call wrt_r_item("vb.li", x=122.2_r8)
call wrt_r_item("vb.k", x=0.2_r8)
call wrt_r_item("vb.t0", na=.true., last=.TRUE.)

return
end subroutine sub1

subroutine sub2(mat1, mat2, mvmat, rnames, cnames, id0, nr, nc)
use for2r
implicit none
integer, parameter :: r4 = kind(1.0) !--real single precision
integer, parameter :: r8 = kind(1.0d0) !--real double precision
integer, intent(IN) :: nr, nc
real(r8), intent(IN) :: mat1(nr,nc), mat2(nr,nc)
logical, intent(IN) :: mvmat(nr,nc)
character(len=*), intent(IN) :: rnames(nr), cnames(nc)
integer, intent(IN) :: id0(nr)
!
! Write a complete vector:
call wrt_r_complete_vector("vector3", ax=cnames)
! Write a MATRIX object with character rownames and column names:
call wrt_r_matrix("ran.mat",x=mat1,rownames=rnames,colnames=cnames)
! Write another MATRIX object with integer row names, no column names, and NAs
call wrt_r_matrix("ran2.mat",x=mat2, na=mvmat, rowids=id0)
! Write a MATRIX object with no row or column names:
call wrt_r_matrix("ran3.mat",x=mat2)
return

end subroutine sub2

subroutine sub3(vec1, vec2, vec3, mvvec, id1, id2, mat1, mat2, mvmat, rnames, nr, nc)
use for2r
implicit none
integer, parameter :: r4 = kind(1.0) !--real single precision
integer, parameter :: r8 = kind(1.0d0) !--real double precision
integer, intent(IN) :: nr, nc
real(r8), intent(IN) :: mat1(nr,nc), mat2(nr,nc), vec1(nr), vec2(nr), vec3(nr)
logical, intent(IN) :: mvmat(nr,nc), mvvec(nr)
integer, intent(IN) :: id1(nr), id2(nc)
character(len=*), intent(IN) :: rnames(nr)

! Write a DATA FRAME object:
call open_r_df("tseries")

call wrt_r_df_col("id",ix=id1)
call wrt_r_df_col("var1", x=vec1)
call wrt_r_df_col("var2", x=vec2, na=mvvec)
call wrt_r_df_col("var3", x=vec3, last=.TRUE., rownames=rnames)

! Write some complete vectors, with and without names
call wrt_r_complete_vector("vector1", x=vec3)
! Write a list object containing two matrices and a complete vector:

21

call open_r_list("lcomp.mats")
call wrt_r_matrix("lcomp.a", x=mat1, na=mvmat, rowids=id1, colids=id2)
call wrt_r_matrix("lcomp.b", x=mat2, rowids=id1, colids=id2)
call wrt_r_complete_vector("vector2", x=vec3, el_names=rnames)

call close_r_list
!
! Close the file
call wrt_r_comment("Calling close_r_file -- last call in program.")
call close_r_file
return

end subroutine sub3
! ===

22

Appendix B Listing of resulting R-compatible file for2rtest.rdat

This listing shows the file created by running the Fortran program in Appendix A. The symbol

Ô indicates a line that has been broken for printing but is continuous in the source.

This file written with For2R version 1.03.
Read this file into R or S with x=dget(’for2r-test.rdat’).
For2R written by Mike.Prager@noaa.gov. Please credit author and report bugs/Ô

improvements.

structure(list(

info = structure(list
(date ="Monday, 11 Sep 2006 at 15:38:35"
,"Michael H. Prager","32b","yellow grouper","Statistical CAA","mm","mt"),
.Names = c("date","author","run","species","model","units.len","units.L"))

,real.parms=structure(
c(2.000000E-01, 1.222000E+02, 2.000000E-01,NA),
.Names = c("vb.k","vb.li","vb.k","vb.t0"))

,vector3=structure(c(
"var01","var02","var03","var04","var05"),
.Names=NULL)

,ran.mat=structure(c(
4.343074E-01, 4.543782E-01, 9.143141E-01, 4.826358E-01, 7.198956E-01, 7.313963E-01,
8.962970E-01, 4.702251E-01, 9.891793E-02, 3.266718E-01, 7.035185E-01, 2.288867E-01,
6.176318E-01, 7.967285E-02, 6.718546E-01, 2.578035E-01, 7.432624E-01, 7.414805E-01,
9.543727E-01, 7.298225E-01, 3.383379E-01, 4.264307E-01, 1.169208E-01, 3.524058E-01,
5.314035E-01, 5.779926E-01, 8.660569E-01, 1.344878E-02, 8.788866E-01, 1.122137E-01),
.Dim = c(6,5),
.Dimnames = list(
c("yr1991","yr1992","yr1993","yr1994","yr1995","yr1996"),
c("var01","var02","var03","var04","var05")))

,ran2.mat=structure(c(
4.343074E+11, 4.543782E+11, 9.143141E+11, 4.826358E+11, 7.198956E+11, 7.313963E+11,
NA, 4.702251E+11, 9.891793E+10, 3.266718E+11, 7.035185E+11, 2.288867E+11,
6.176318E+11, 7.967285E+10, 6.718546E+11,NA, 7.432624E+11, 7.414805E+11,
9.543727E+11, 7.298225E+11, 3.383379E+11, 4.264307E+11, 1.169208E+11, 3.524058E+11,
5.314035E+11, 5.779926E+11, 8.660569E+11, 1.344878E+10, 8.788866E+11, 1.122137E+11),
.Dim = c(6,5),
.Dimnames = list(
c("1991","1992","1993","1994","1995","1996"),
NULL))

,ran3.mat=structure(c(
4.343074E+11, 4.543782E+11, 9.143141E+11, 4.826358E+11, 7.198956E+11, 7.313963E+11,
8.962970E+11, 4.702251E+11, 9.891793E+10, 3.266718E+11, 7.035185E+11, 2.288867E+11,
6.176318E+11, 7.967285E+10, 6.718546E+11, 2.578035E+11, 7.432624E+11, 7.414805E+11,
9.543727E+11, 7.298225E+11, 3.383379E+11, 4.264307E+11, 1.169208E+11, 3.524058E+11,
5.314035E+11, 5.779926E+11, 8.660569E+11, 1.344878E+10, 8.788866E+11, 1.122137E+11),
.Dim = c(6,5),
.Dimnames = list(
NULL,
NULL))

,tseries=structure(list
(id=c(1991,1992,1993,1994,1995,1996)
,var1=c(4.388587E-01, 8.772471E-01, 6.230486E-01, 2.340929E-01, 5.005605E-01, 2.091781EÔ

-01)
,var2=c(3.236074E-01,NA,NA, 1.334418E-01, 6.757775E-01, 6.904809E-01)
,var3=c(7.323978E-02, 7.664885E-01, 9.251272E-01, 4.576593E-01, 3.932098E-01, 7.195412EÔ

-01)
),
.Names = c(
"id","var1","var2","var3"),
row.names = c("yr1991","yr1992","yr1993","yr1994","yr1995","yr1996"),

23

class = "data.frame")

,vector1=structure(c(
7.323978E-02, 7.664885E-01, 9.251272E-01, 4.576593E-01, 3.932098E-01, 7.195412E-01),
.Names=NULL)

,lcomp.mats=structure(list(

,lcomp.a=structure(c(
4.343074E-01, 4.543782E-01, 9.143141E-01, 4.826358E-01, 7.198956E-01, 7.313963E-01,
NA, 4.702251E-01, 9.891793E-02, 3.266718E-01, 7.035185E-01, 2.288867E-01,
6.176318E-01, 7.967285E-02, 6.718546E-01,NA, 7.432624E-01, 7.414805E-01,
9.543727E-01, 7.298225E-01, 3.383379E-01, 4.264307E-01, 1.169208E-01, 3.524058E-01,
5.314035E-01, 5.779926E-01, 8.660569E-01, 1.344878E-02, 8.788866E-01, 1.122137E-01),
.Dim = c(6,5),
.Dimnames = list(
c("1991","1992","1993","1994","1995","1996"),
c("0","1","2","3","4")))

,lcomp.b=structure(c(
4.343074E+11, 4.543782E+11, 9.143141E+11, 4.826358E+11, 7.198956E+11, 7.313963E+11,
8.962970E+11, 4.702251E+11, 9.891793E+10, 3.266718E+11, 7.035185E+11, 2.288867E+11,
6.176318E+11, 7.967285E+10, 6.718546E+11, 2.578035E+11, 7.432624E+11, 7.414805E+11,
9.543727E+11, 7.298225E+11, 3.383379E+11, 4.264307E+11, 1.169208E+11, 3.524058E+11,
5.314035E+11, 5.779926E+11, 8.660569E+11, 1.344878E+10, 8.788866E+11, 1.122137E+11),
.Dim = c(6,5),
.Dimnames = list(
c("1991","1992","1993","1994","1995","1996"),
c("0","1","2","3","4")))

,vector2=structure(c(
7.323978E-02, 7.664885E-01, 9.251272E-01, 4.576593E-01, 3.932098E-01, 7.195412E-01),
.Names = c(
"yr1991","yr1992","yr1993","yr1994","yr1995","yr1996"))
)
,.Names = c("lcomp.a","lcomp.b","vector2"))
Calling close_r_file -- last call in program.
),

.Names=c("info","real.parms","vector3","ran.mat","ran2.mat","ran3.mat","tseries","vector1"Ô
,"lcomp.mats"))

24

Appendix C Sample R Session

This listing illustrates an R session that reads the data file created in Appendix A.

R : Copyright 2006, The R Foundation for Statistical Computing
Version 2.3.1 (2006-06-01)
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.
>
> ##### Read the data #####
> fordata <- dget("for2r-test.rdat")
>
> ##### Get some information about fordata #####
> str(fordata, max.level=1)
List of 9
$ info :List of 7
$ real.parms: Named num [1:4] 0.2 122.2 0.2 NA
..- attr(*, "names")= chr [1:4] "vb.k" "vb.li" "vb.k" "vb.t0"
$ vector3 : chr [1:5] "var01" "var02" "var03" "var04" ...
$ ran.mat : num [1:6, 1:5] 0.434 0.454 0.914 0.483 0.720 ...
..- attr(*, "dimnames")=List of 2
$ ran2.mat : num [1:6, 1:5] 4.34e+11 4.54e+11 9.14e+11 4.83e+11 7.20e+11 ...
..- attr(*, "dimnames")=List of 2
$ ran3.mat : num [1:6, 1:5] 4.34e+11 4.54e+11 9.14e+11 4.83e+11 7.20e+11 ...
..- attr(*, "dimnames")=List of 2
$ tseries :‘data.frame’: 6 obs. of 4 variables:
$ vector1 : num [1:6] 0.0732 0.7665 0.9251 0.4577 0.3932 ...
$ lcomp.mats:List of 3
>
> ##### Names and contents of info list #####
> names(fordata$info)
[1] "date" "author" "run" "species" "model" "units.len" "units.L"
>
> fordata$info$date
[1] "Monday, 11 Sep 2006 at 15:38:35"
>
> fordata$info$run
[1] "32b"
>
> ##### Print the included data frame #####
> fordata$tseries

id var1 var2 var3
yr1991 1991 0.4388587 0.3236074 0.07323978
yr1992 1992 0.8772471 NA 0.76648850
yr1993 1993 0.6230486 NA 0.92512720
yr1994 1994 0.2340929 0.1334418 0.45765930
yr1995 1995 0.5005605 0.6757775 0.39320980
yr1996 1996 0.2091781 0.6904809 0.71954120
>
> ##### Run simple statistics on the data frame #####
> summary(fordata$tseries)

id var1 var2 var3
Min. :1991 Min. :0.2092 Min. :0.1334 Min. :0.07324
1st Qu.:1992 1st Qu.:0.2853 1st Qu.:0.2761 1st Qu.:0.40932
Median :1994 Median :0.4697 Median :0.4997 Median :0.58860
Mean :1994 Mean :0.4805 Mean :0.4558 Mean :0.55588
3rd Qu.:1995 3rd Qu.:0.5924 3rd Qu.:0.6795 3rd Qu.:0.75475
Max. :1996 Max. :0.8772 Max. :0.6905 Max. :0.92513

NA’s :2.0000
>

25

	1 Introduction
	1.1 Overview of For2R
	1.2 The For2R package
	1.3 R in brief
	1.4 For2R and FishGraph
	1.5 Reporting Problems
	1.6 Data Structures in For2R

	2 Usage considerations
	2.1 Precision
	2.2 Object names
	2.3 Error checking

	3 Sequence of calls
	4 Specifications
	4.1 Open and close R-compatible data file
	4.2 Info list
	4.3 Comment object
	4.4 Vector object (element by element)
	4.5 Vector object (complete)
	4.6 Matrix object
	4.7 Data frame object
	4.8 List object

	5 Acknowledgments
	Bibliography
	Appendices
	A Fortran example listing
	B Output listing
	C Sample R Session

